

ООО «Энергосберегающая компания ТЭМ»

РАСХОДОМЕРЫ – СЧЕТЧИКИ ЭЛЕКТРОМАГНИТНЫЕ РСМ-05.03(ТЭСМАРТ) РСМ-05.03(ТЭСМАРТ-А)

Руководство по эксплуатации ЭС 99556332.012.001

www.tem-pribor.com Тел: (495) 234-30-85 (86,87), (495) 730-57-12 111020, Москва, ул. Сторожевая, д. 4, строение 3 2009-05-06 2017-04-27

Группа компаний "ТЭМ" является одним из крупнейших поставщиков оборудования для учета и сбережения тепловой энергии. Активно работает на рынке всех стран Таможенного союза.

Основными направлениями деятельности компании являются:

- разработка, производство и поставка приборов учета тепла и расхода жидкости;
 - разработка, производство и поставка регуляторов температуры;
 - разработка, производство и поставка термометров;
- разработка, производство и поставка защищенного сетевого оборудования;
 - разработка, производство и поставка поверочных установок;
- оказание услуг по контрактным разработкам оборудования для различных областей промышленности

Группа компаний "ТЭМ" включает в себя:

- ООО "Энергосберегающая компания "ТЭМ" г. Москва
- ООО НПФ "ТЭМ-прибор" г. Москва
- ООО "ТЭСМАРТ-промэнерго" г. Минск

Контактные данные:

Адрес: 111020, Москва, ул. Сторожевая, д. 4, строение 3 Тел: (495) 234-30-85. 234-30-86, 234-30-87, 730-57-12

e-mail: ekotem@tem-pribor.com сайт: www.tem-pribor.com

СОДЕРЖАНИЕ	
1 НАЗНАЧЕНИЕ	5
2 ТЕХНИЧЕСКИЕ ДАННЫЕ	6
2.1 Исполнение	6
2.2 Технические характеристики	7
Таблица 2	
2.3 Рабочие условия	
2.4 Метрологические характеристики	
3 КОМПЛЕКТНОСТЬ	
4 Принцип действия и устройство расходомеров	
4.1 Принцип действия	
4.2 Состав и конструкция расходомеров	
5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	14
6 ВЫБОР ТИПОРАЗМЕРА РАСХОДОМЕРА	14
7 МЕРЫ БЕЗОПАСНОСТИ	
8 МОНТАЖ И ПОДГОТОВКА К РАБОТЕ	16
8.1 Общие требования	
8.2 Требования к месту установки расходомера (ППР)	
8.3 Монтаж расходомера	
8.4 Монтаж ТС	
8.5 Монтаж ДИД	
8.6 Монтаж электрических цепей	
8.7 Описание интерфейсов расходомера	
8.8 Подготовка к работе	
8.9 Конфигурация схемы каскада дискретного выхода	
8.10 Демонтаж	
9 ПОРЯДОК РАБОТЫ	
9.1 Описание режима «Рабочий»	
9.2 Описание режимов «Установки» и «Служебный»	
9.3 Дополнительные возможности расходомера	
10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
11 ПОВЕРКА	38
11.1 Требования к поверке приборов	38
11.2 Описание режима поверки	
12 Возможные неисправности и способы их устранения	
13 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	
14 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	42
15 УЧЕТ РАБОТЫ	
ПРИЛОЖЕНИЕ А	
ПРИЛОЖЕНИЕ В	
ПРИЛОЖЕНИЕ В	
ПРИЛОЖЕНИЕ Д	

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации распространяется на расходомеры-счетчики электромагнитные PCM-05.03(ТЭСМАРТ) и PCM-05.03(ТЭСМАРТ-А) (далее — расходомеры) и предназначено для ознакомления с устройством, конструкцией, принципом действия, правилами эксплуатации и порядком выполнения монтажных работ этих расходомеров.

Перед началом монтажных работ и эксплуатацией приборов внимательно ознакомьтесь с настоящим руководством по эксплуатации.

Монтаж и подготовка к работе расходомеров должны производиться в строгом соответствии с разделом «МОНТАЖ И ПОДГОТОВКА К РАБОТЕ».

Предприятие-изготовитель оставляет за собой право вносить в конструкцию и схему расходомеров изменения непринципиального характера без отражения в руководстве по эксплуатации.

В руководстве по эксплуатации приняты следующие сокращения:

ППР – первичный преобразователь расхода;

Ду – номинальный диаметр ППР;

ПМ – преобразователь микропроцессорный;

ТС – термопреобразователь сопротивления;

ДИД – датчик избыточного давления;

ЭДС – электродвижущая сила;

ПК – ІВМ совместимый персональный компьютер;

ПО – программное обеспечение;

HC - нештатная ситуация (ситуация, обусловленная выходом за установленные пределы параметров: расхода в одном из каналов);

TH – техническая неисправность (отклонение режима работы прибора от заданного, вызванное его неисправностью).

Запрещается:

- -касаться руками электродов, находящихся во внутреннем канале ППР на всех этапах работы с расходомерами;
- -проведение электросварочных работ при включенном питании расходомеров;
- -производство сварки на трубе и фланцах ППР;
- -установка и эксплуатация расходомеров в пожароопасных и взрывоопасных зонах всех классов.

ВНИМАНИЕ!

При проведении сварочных работ расходомеры должны быть защищены от попадания искр и окалины.

Недопустимо протекание сварочного тока через корпус прибора.

Весь объём трубопровода ППР должен быть заполнен жидкостью.

Расходомеры-счетчики электромагнитные PCM-05 модификации PCM-05.03(ТЭСМАРТ), PCM-05.03(ТЭСМАРТ-А) зарегистрированы в Государ-

ственном реестре средств измерений Российской Федерации под № 57470/14 и имеют соответствующие сертификаты об утверждении типа средств измерений.

1 НАЗНАЧЕНИЕ

Расходомеры предназначены для измерения расхода электропроводных жидкостей в системах автоматического контроля, управления и учета, в том числе и коммерческого.

Расходомеры могут использоваться в составе теплосчетчиков для коммерческого учёта количества теплоты и теплоносителя, потребляемых жилыми и общественными зданиями, промышленными предприятиями.

Расходомеры осуществляют:

измерение:

- -текущих значений объёмного и массового расходов, $[m^3/4]$, $[\tau/4]$;
- –текущих температур потока в трубопроводах, на которых установлены TC, $[{}^{\circ}C]^{1};$
- -избыточных давлений потока в трубопроводах, на которых установлены $ДИД^1$, [МПа];
- -интервалов времени, [ч];

регистрацию:

- разности объемов и масс жидкости, протекших в прямом и обратном направлениях, $[M^3]$, [T];
- -Тр времени работы прибора при поданном питании [ч:мин];
- -Тнараб времени работы прибора без остановки счета с нарастающим итогом [ч:мин];
- -Тош времени работы прибора при наличии ТН [ч:мин];
- -Т:G↑, Т:G↓ времени работы отдельно по каждой НС [ч:мин];
- -архива данных;

преобразование:

-среднего объёмного (массового) расхода или температуры жидкости первого канала в унифицированный сигнал постоянного тока 4-20 мА, при установленном модуле токового выхода;

-среднего объёмного или массового расхода первого канала в частотный сигнал, при установленном частотно-импульсном модуле;

PCM-05.03(ТЭСМАРТ), PCM-05.03(ТЭСМАРТ-А) Руководство по эксплуатации

¹ по согласованию с потребителем, допускается эксплуатация расходомеров без использования соответствующих измерительных преобразователей, в этом случае температура и давление могут быть установлены программно.

- –протекшего объема первого канала в импульсный сигнал, при установленном частотно-импульсном модуле;
- -обеспечивает передачу данных по последовательным интерфейсам RS-232C, RS-485.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1 Исполнение

2.1.1 Расходомер имеет двухстрочный цифробуквенный жидкокристаллический индикатор. Выбор индицируемых параметров производится нажатием кнопок, находящихся на передней панели.

В состав расходомеров входят следующие измерительные каналы:

два канала объемного расхода,

два канала температуры,

два канала давления.

Расходомеры состоят из первичного преобразователя расхода (ППР) и преобразователя микропроцессорного (ПМ) типа ПМ.03. ППР и ПМ имеют раздельное конструктивное исполнения.

Внешний вид ППР и ПМ приведен на рисунках 2.1 и 2.2.

Рисунок 2.1. Первичные преобразователи расхода ППР

Рисунок 2.2. Преобразователь микропроцессорный ПМ.03

2.2 Технические характеристики

2.2.1 Расходомеры имеют два независимых канала измерения расхода и осуществляют измерение среднего объемного расхода G [м³/ч] или объема V [м³] при прямом и обратном (реверсивном) движении жидкости в диапазонах расходов, приведенных в таблице 1.

Таблица 1

Условный	,	Типы ППР							
диаметр,	ПРП, ПП	ПРПМ	ПРПН	ПРПН/Р	ПРП, ПП	ПРПМ	ПРПН	ПРПН/Р	
Ду, мм	I	Наименьший ј	расход $G_{\rm H}$, м ³	/ч	I	Наибольший	й расход $G_{ m B}$, м	и ³ /ч	
4	_	_	_	0,015	_	_	_	0,3	
8	_	_	_	0,015	-	-	_	1,0	
15		0,015	0,015	0,015		6.0	6.0	6.0	
13	_	(0,006)	(0,006)	(0,006)	_	6,0	6,0	6,0	
20	_	_	_	0,015				6,0	
20				(0,006)				0,0	
25	0,04 (0,016)	0,04 (0,016)	0,04 (0,016)	0,04 (0,016)	16,0	16,0	16,0	16,0	
32	0,075 (0,03)	0,075 (0,03)	0,075 (0,03)	_	30,0	30,0	30,0	_	
40	0,1 (0,04)	0,1 (0,04)	0,1 (0,04)	-	40,0	40,0	40,0	_	
50	0,15 (0,06)	0,15 (0,06)	0,15 (0,06)	_	60,0	60,0	60,0	_	
65	0,25 (0,1)	_	_	_	100,0	_	_	_	
80	0,4 (0,16)	_	_	_	160,0	1	-	_	
100	0,75 (0,3)	_	_	_	300,0	-		_	
150	1,25(0,5)	_	_	_	500,0	-		_	
В скобках у	казаны значен	ния Сн для ди	апазона изме	рения расход	а 1:1000, пр	едоставляем	иого по заказ	/	

Потребитель может устанавливать значение минимального G^{\downarrow} и максимального G^{\uparrow} порога измерения объемного расхода, в пределах от 0,25% до 10% $G_{\rm B}-$ для G^{\downarrow} и от 60% до 125% $G_{\rm B}-$ для G^{\uparrow} , при выходе за пределы которых расходомеры формируют сообщение об ошибке.

- 2.2.2 В расходомерах реализованы функции **Контроль G** и **Контроль G** . При активации данной функции выход за пределы диапазона измерения объемного расхода, заданного уставками **G** и **G** , вызывает изменение уровня сигнала с логической «1» на логический «0» на выходах F/N и V соответственно (при конфигурации выходного сигнала «напряжение»).
- 2.2.3 Расходомеры могут осуществлять (в зависимости от установок) контроль обрыва или короткого замыкания в цепи возбуждения ППР, а также контроль заполнения трубопровода жидкостью.
- 2.2.4 Расходомеры могут осуществлять измерение объема и массы жидкости при реверсивном движении жидкости в трубопроводе и формировать выходной сигнал **«признак реверса»**.
- 2.2.5 В расходомерах предусмотрена функция «ДОЗА», предназначенная для дозированной подачи устанавливаемого пользователем объема жидкости (в литрах). Дозирование осуществляется путем формирования сигнала управления включение/выключение для исполнительного механизма. Включение при старте, выключение при прохождении через ППР установленного объема

жидкости.

2.2.6 При наличии ТС, которые приведены в таблице 2, расходомеры осуществляют измерение температуры жидкости t в градусах Цельсия. Диапазон измерения температуры – от 0 °C до 150 °C. Номинальные статические характеристики ТС, которые могут быть применены в комплекте с расходомером, выбираются Pt'100 (W100=1,3910),Pt100 (W100=1,3850),ИЗ ряда: Pt'500 (W100=1,3910), Pt500 (W100=1,3850),Cu'100 (W100=1,4280),Cu100 (W100=1,4260). Класс допуска термопреобразователей «А», «В» или «С» по ГОСТ 6651-94. При отсутствии ТС значение температуры среды может быть установлено потребителем программно.

Таблица 2

Наименование и услов-	Номер по	Наименование и услов-	Номер по
ное обозначение	Госреестру СИ	ное обозначение	Госреестру СИ
ТСП – Н	38959-08	ТСПТ	36766-09
ТПТ-1	46155-10	ТС-Б-Р	43287-09

- 2.2.7 Сопротивление каждого провода четырёхпроводной линии связи между расходомерами и ТС должно быть не более 100 Ом.
- 2.2.8 Расходомеры осуществляют измерение давления. Типы ДИД применяемых в составе расходомеров приведены в таблице 3. Диапазон измерения давления от 0 до 1,6 (2,5) МПа. Границы диапазона измерения давления (заводская установка (0÷1,6) МПа) и диапазон измерения токового сигнала от ДИД (0÷5) мА, (0÷20) мА или (4÷20) мА устанавливается при помощи программыконфигуратора до ввода в эксплуатацию.

Таблица 3

Наименование и условное обозначение	Номер в Госреестре	Наименование и условное обозначение	Номер в Госреестре
ИД	26818-09	КОРУНД ДИ	14446-09
ПД-Р	40260-08	мида ди	17636-06
БД	38413-08	KPT-9	24564-07

- 2.2.9 Сопротивление нагрузки канала для подключения ДИД (без учета линий связи) не более 100 Ом.
 - 2.2.10 Допустимое значение тока в цепи ДИД не более 40 мА.
- 2.2.11 Предусмотрена возможность программной установки значений избыточного давления в диапазоне $(0 \div 2.5)$ МПа.
- 2.2.12 Предусмотрена установка договорных значений давления при помощи программы-конфигуратора, которые будут использоваться в случае обрыва или короткого замыкания в цепях датчиков давления (при использовании ДИД с диапазоном токов ($4\div20$) мА).

- 2.2.13 Расходомер выполняет преобразование параметров объемного, массового расхода или температуры в унифицированный сигнал постоянного тока (при наличии токового модуля).
- 2.2.14 Диапазон выходного унифицированного сигнала постоянного тока устанавливается на предприятии-изготовителе 4-20 мА. При этом максимальному значению выходного сигнала соответствует 100% значения шкалы измерения выбранного параметра.
- 2.2.15 Расходомер осуществляет преобразование протекшего объёма в импульсный сигнал и среднего объёмного расхода в частотный сигнал (при наличии частотно-импульсного модуля).
- 2.2.16 Частота, соответствующая максимальному значению расхода в выбранном диапазоне, равна 2000 Гц. Скважность выходного частотного сигнала равна 2.
- 2.2.17 Длительность импульса импульсного выходного сигнала -50 мс, минимальный период следования импульсов -100 мс.
- 2.2.18 Выходной каскад аппаратно может быть выполнен как: выходной сигнал **«напряжение»**, выходной сигнал типа **«сухой контакт»**, выходной сигнал типа **«открытый коллектор»** (см. рисунок 8.15).
- 2.2.19 Конфигурация выходных каскадов для расходомеров по умолчанию выполнена как **«сухой контакт»**. Напряжение на переходе коллектор эмиттер не должно превышать 30 В.
 - 2.2.20 Ток нагрузки не должен превышать 10 мА.
- 2.2.21 В конфигурации выходного каскада "выход напряжение" уровню логической единицы соответствует величина напряжения от 9 до 14 В, уровню логического нуля от 0 до 1,5 В.
- 2.2.22 Весовой коэффициент (л/имп) устанавливается на предприятииизготовителе по заказу потребителя (см. карту заказа, ПРИЛОЖЕНИЕ В) в соответствии с таблицей 4.

Таблина 4

	٦.											
Ду, мм,	4	8	15	20	25	32	40	50	65	80	100	150
$K_{\rm V.}$ л/имп	1	1	1	1	1	10	10	10	10	10	100	100

- 2.2.23 Весовой коэффициент (Кv, л/имп) может быть изменен, значение выбирается из ряда 0,25; 0,5; 1; 2,5; 5;10; 25; 50; 100; 250; 500; 1000; 2500; 5000;10000.
- 2.2.24 Расходомеры индицируют состояния системы при помощи трёх светодиодов, расположенных на верхней панели ПМ:
- -зеленый светодиод мигает подано питание, расходомер находится в рабочем режиме;
- –красный мигает с частотой $\geq 5\Gamma$ ц расход больше Gв;
- –красный мигает с частотой $≤2\Gamma$ ц расход меньше Gн;
- -желтый светодиод мигает идет обмен данными по последовательному каналу.

- 2.2.25 Расходомеры осуществляют «отсечку» выходного частотного (импульсного) сигнала, если измеряемый расход ниже программно установленного порога (**Gotc**). На предприятии-изготовителе устанавливается **Gotc=0,0025GB** (при заказе варианта с диапазоном 1:1000 устанавливается Gotc=0,001GB). В случае если **G** < **Gotc**, частота выходного сигнала **fвых=0** Γ **ц**.
- 2.2.26 При измерении реверсивного расхода в канале G1, расходомер выдает сигнал признака реверса в виде замкнутого «сухого контакта» или постоянного напряжения, соответствующего логическому «0» на выходе частотно-импульсного модуля (см. рис. 8.10).
- 2.2.27 Расходомеры имеют выход последовательного интерфейса RS-232C. Максимальная скорость передачи данных 57600 бит/с. Максимальная длина линий связи 15 м.
- 2.2.28 Расходомеры имеют выход последовательного интерфейса RS-485(по заказу гальваноразвязанный RS-485). Скорость передачи данных 9600 бит/с. Максимальная длина линий связи 1200м.
 - 2.2.29 Глубина архива регистрируемых параметров для расходомеров
- -часовых данных 1728 (72 последних суток);
- -суточных данных 736 (24 последних месяца).
- 2.2.30 Потребляемая мощность расходомеров не превышает 10 Вт. Степень защиты оболочки расходомеров от проникновения пыли и влаги соответствует IP54 по ГОСТ 14254. По заказу ППР расходомера изготавливается соответствующим степени защиты оболочки IP65 или IP68.
 - 2.2.31 Расходомеры предназначены для непрерывной работы.
 - 2.2.32 Среднее время наработки на отказ при эксплуатации расходомеров в рабочих условиях с учётом технического обслуживания, регламентируемого паспортом, не менее 50 000 часов.
 - 2.2.33 Средний срок службы расходомеров не менее 10 лет.

2.3 Рабочие условия

- 2.3.1 Температура измеряемой жидкости от 0 °C до плюс 150 °C.
- 2.3.2 Температура окружающего воздуха от плюс 5 °C до плюс 50 °C.
- 2.3.3 Относительная влажность окружающего воздуха не должна превышать 95% при температуре плюс 30 °C.
 - 2.3.4 Атмосферное давление от 86,0 до 106,7 кПа.
 - $2.3.5\ \Pi$ итание напряжением переменного тока $220\ (24)^{^{+10\%}_{-15\%}}\ B.$
 - 2.3.6 Частота питающей сети ($50,0\pm1,0$) Гц.
- 2.3.7 Напряжённость внешнего магнитного поля промышленной частоты не должна превышать $40~\mathrm{A/m}.$
 - 2.3.8 Диапазон изменения удельной электрической проводимости жидко-

- сти от $5 \cdot 10^{-4}$ до $5 \cdot 10^{-1}$ См/м.
- 2.3.9 В случае, если расходомеры используются в системе теплоснабжения, теплоноситель должен соответствовать СНиП 2.04.07-86. Если содержание примесей (ферромагнитных включений) превышает норму, то возможно выпадение осадка на футеровке ППР, что в некоторых случаях может привести к снижению точности измерений.
- 2.3.10 Весь объём трубопровода ППР должен быть заполнен измеряемой жидкостью.
- 2.3.11 Расходомеры не предназначены для установки и эксплуатации во взрывоопасных и пожароопасных зонах по ПУЭ.
- 2.3.12 Избыточное давление в трубопроводе ППР до 1,6 (по заказу 2,5) МПа.

2.4 Метрологические характеристики

- 2.4.1 Расходомеры изготавливаются в соответствии со спецификацией заказа (см. ПРИЛОЖЕНИЕ А).
- 2.4.2 Пределы допускаемой относительной погрешности при измерении объёма (среднего объёмного расхода) жидкости и выводе информации в виде импульсного (частотного) сигнала, приведены в таблице 5.

Таблица 5

Тип расходомера и диапазон измерений	Пределы допускаемой погрешности, %
PCM-05.03(TЭCMAPT)	
$(400 < G_B/G \le 1000)$	$(\pm 9,0)$
$100 < G_B/G \le 400 \ (250 < G_B/G \le 400)$	±4,5 (±4,5)
$20 < G_B/G \le 100 (100 < G_B/G \le 250)$	±2,0 (±3,0)
$1 < G_B/G \le 20$ $(1 < G_B/G \le 100)$	$\pm 1,0 \ (\pm 2,0)$
PCM-05.03(T9CMAPT-A)	
$(400 < G_B/G \le 1000)$	$(\pm 4,0)$
$100 < G_B/G \le 400 \ (250 < G_B/G \le 400)$	±2,0 (±2,0)
$20 < G_B/G \le 100 (100 < G_B/G \le 250)$	$\pm 1,0 \ (\pm 1,5)$
$1 < G_B/G \le 20$ $(1 < G_B/G \le 100)$	$\pm 0.5 \ (\pm 1.0)$
В скобках указаны значения для диапазона и	змерения расхода 1:1000, предоставляемого по заказу

2.4.3 Масса расходомера в зависимости от номинального диаметра и типа ППР не превышает значений, приведенных в таблице 6.

Таблица 6

Наимено-		Масса, кг, не более										
вание		Диаметр условного прохода ППР, Ду, мм										
	4	8	15	20	25	32	40	50	65	80	100	150
ПРП	_	_	_	_	4,6	6,1	7,9	8,1	13,6	14,6	18,1	36,6
ПРПМ	_	_	2,6	2,6	2,6	2,6	2,6	2,6	_	_	_	_
ПРПН	_	_	_	_	5,6	6,6	7,9	8,1	_	_	_	_
ПРПН/Р	1,9	1,9 1,9 1,9 2,1 2,3										
ПМ.03						1,9	9					

2.4.4 Габаритные и установочные размеры приведены в ПРИЛОЖЕ-

3 КОМПЛЕКТНОСТЬ

	Коли-	
Наименование и условное обозначение	чество,	Примечание
	шт.	-
Первичный преобразователь расхода (ППР)	1 или 2	В соответствии
		со спецификаци-
		ей заказа
Преобразователь микропроцессорный (ПМ)	1	В соответствии
		со спецификаци-
		ей заказа
Термопреобразователи сопротивления (ТС)	0 или 1	В соответствии
	или 2	со спецификаци-
		ей заказа
Комплект монтажных частей	0 или 1	В соответствии
		со спецификаци-
		ей заказа
Комплект запасных частей	1	
Преобразователи давления	0 или 1	В соответствии
	или 2	со спецификаци-
		ей заказа
Расходомеры - счетчики электромагнитные		
РСМ-05 модификации РСМ-05.03(ТЭСМАРТ),		
PCM-05.03(TЭCMAPT-A), PCM-5.05(TЭCMAPT),		
PCM-05.05 (TЭCMAPT-A), PCM-05.07(TЭCMAPT),		
РСМ-05.07(ТЭСМАРТ-А), РСМ-05.05(ТЭСМАРТ-П),		
PCM-05.05(ТЭСМАРТ-ПА),		
РСМ-05.05(ТЭСМАРТ-Э) Паспорт ЭС		
99556332.012.000 ΠC	1	
Расходомеры - счетчики электромагнитные		В соответствии
PCM-05.03(TЭCMAPT), PCM-05.03(TЭCMAPT-A)		со спецификаци-
Руководство по эксплуатации ЭС		ей заказа
99556332.012.001 PЭ	1	
Расходомеры - счетчики электромагнитные		По отдельному
РСМ-05 модификации РСМ-05.03(ТЭСМАРТ),		требованию
PCM-05.03(TЭCMAPT-A), PCM-5.05(TЭCMAPT),		
PCM-05.05 (TЭCMAPT-A), PCM-05.07(TЭCMAPT),		
РСМ-05.07(ТЭСМАРТ-А), РСМ-05.05(ТЭСМАРТ-П),		
РСМ-05.05(ТЭСМАРТ-ПА),		
РСМ-05.05(ТЭСМАРТ-Э) Методика поверки		
ЭС 99556332.012.000 МП	1	

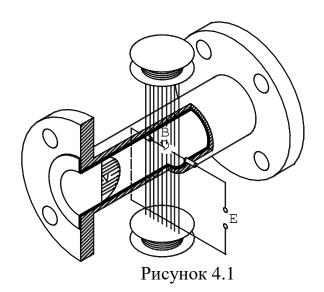
Содержание драгоценных материалов (определено комиссионно) составляет: золота - 0,1922894 г; серебра - 0,1786973472 г.

4 Принцип действия и устройство расходомеров

4.1 Принцип действия

4.1.1 Принцип действия расходомера основан на явлении электромагнитной индукции (см. рисунок 4.1).

При движении электропроводной жидкости в магнитном поле, создаваемом электромагнитной системой ППР, между электродами возникает ЭДС (E):


$$E = B \cdot v \cdot D, \tag{1}$$

где B — индукция магнитного поля, создаваемого электромагнитной системой $\Pi\Pi P$;

v — средняя скорость потока жидкости;

D – расстояние между электродами.

4.1.2 Для данного типоразмера расходомера В и D являются постоянными величинами, поэтому ЭДС Е зависит только от средней скорости потока жидкости. Наводимая ЭДС передаётся в ПМ, где преобразуется в цифровое значение, в соответствии с которым вычисляется объёмный расход жидкости.

4.2 Состав и конструкция расходомеров

- 4.2.1 Состав расходомеров и количество измерительных каналов приведены в таблице 2.1 и 2.2
- 4.2.2 К расходомерам могут подключаться термопреобразователи сопротивления (TC) с номинальной статической характеристикой: Pt100, Pt'100, Pt500, Pt'500, Cu100, Cu'100 по ГОСТ 6651-2009.
- 4.2.3 ПМ функционально состоит из блоков аналоговой и цифровой обработки сигнала и блока питания.

- 4.2.4 ППР представляет собой отрезок трубопровода из немагнитного материала (см. рис.4.1), внутренняя поверхность которого футерована диэлектриком (фторопластом). В диаметрально противоположных стенках трубопровода установлены два электрода, контактирующие с измеряемой средой и предназначенные для съёма ЭДС индукции (Е). Благодаря такой конструкции ППР расходомер вносит минимальное гидравлическое сопротивление в поток жидкости. Магнитная система ППР состоит из двух последовательно включённых катушек возбуждения и магнитопровода. ЭДС индукции усиливается в блоке аналоговой обработки ПМ, преобразуется в цифровую форму и поступает затем в блок цифровой обработки сигнала. Блок аналоговой обработки сигнала также формирует ток, поступающий на катушки возбуждения магнитной системы ППР.
- 4.2.5 Преобразование измеренного значения расхода (объёма) жидкости в цифровое значение осуществляется в блоке цифровой обработки сигнала. Преобразование измеренного значения расхода (объёма) жидкости в частотный (импульсный) сигнал выполняется в частотно-импульсном модуле (поставляется в соответствии с заказом). Преобразование измеренного значения расхода (объёма) жидкости в токовый сигнал выполняется в токовом модуле (поставляется в соответствии с заказом).
- 4.2.6 Токовый и частотно-импульсный модули могут быть установлены в любой из слотов расширения (см. рис 8.10).

5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Основные детали и узлы расходомеров маркируются в соответствии с конструкторской документацией.

Маркировка тары производится в соответствии с ГОСТ 14192.

При выпуске с предприятия-изготовителя блоки расходомеров должны иметь пломбы внутри корпуса ПМ.

После выполнения монтажных работ и задания необходимых установок расходомер может быть опломбирован представителями монтажной организации или представителями государственных органов надзора. При этом может быть опломбирован корпус ПМ и ППР.

В случае нарушения или несанкционированного снятия пломб предприятия-изготовителя потребителями, предприятие-изготовитель снимает с себя гарантийные обязательства.

6 ВЫБОР ТИПОРАЗМЕРА РАСХОДОМЕРА

Выбор типоразмера ППР определяется рабочим диапазоном расходов теплоносителя в трубопроводе, на который будет установлен первичный преобразователь. Если требуемый диапазон измерений обеспечивается ППР нескольких типоразмеров (см. рис. 2.2), рекомендуется отдать предпочтение ППР с меньшим Ду. При этом следует учитывать, что возрастают гидравлические потери.

Если значение ДУ выбранного расходомера меньше внутреннего диаметра трубопровода, в который предполагается устанавливать ППР, то для монтажа в

трубопровод используются переходные конуса (конфузор и диффузор).

При установке ППР с меньшим ДУ следует учитывать увеличение вносимого в систему гидравлического сопротивления.

7 МЕРЫ БЕЗОПАСНОСТИ

Источником опасности при монтаже и эксплуатации расходомеров являются:

- −переменное напряжение сетевого питания 220 В;
- -давление жидкости в трубопроводах до 1,6 (2,5) МПа;
- -температура жидкости (трубопровода) до 150 °C.

Безопасность эксплуатации расходомеров обеспечивается:

- -герметичностью фланцевого соединения ППР с трубопроводом;
- -изоляцией электрических цепей составных частей расходомеров;
- -надёжным заземлением составных частей расходомеров.

При эксплуатации расходомеров необходимо соблюдать общие требования безопасности:

- -не допускается эксплуатация расходомеров со снятыми крышками его составных частей;
- -запрещается демонтировать ППР до полного снятия давления в трубопроводе;
- –перед проведением работ необходимо с помощью измерительного прибора убедиться в том, что на трубопроводе отсутствует опасное для жизни напряжение переменного или постоянного тока.

Перед включением расходомеров в электрическую сеть необходимо заземлить их составные части (см. рис.8.7).

При обнаружении внешних повреждений прибора или сетевой проводки следует отключить расходомер до выяснения причин неисправности специалистом по ремонту.

Запрещается установка и эксплуатация расходомеров в пожароопасных и взрывоопасных зонах всех классов.

При установке и монтаже расходомеров необходимо соблюдать требования ГОСТ 12.3.003, ГОСТ 12.3.032, ГОСТ 12.3.036, а также Правил пожарной безопасности и техники безопасности.

При эксплуатации необходимо соблюдать «Правила устройства электроустановок», «Правила техники безопасности при эксплуатации электроустановок» и «Общие правила пожарной безопасности для промышленных предприятий».

Для тушения пожара, при возгорании расходомеров, разрешается использовать только углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-10 и др.

8 МОНТАЖ И ПОДГОТОВКА К РАБОТЕ

Монтаж расходомеров должен производиться в строгом соответствии с требованиями к монтажу настоящего руководства и утвержденным проектом установки персоналом, ознакомленным с эксплуатационной документацией на расходомеры.

8.1 Общие требования

8.1.1 Место установки расходомеров должно соответствовать условиям, приведенным в разделе «Рабочие условия».

8.2 Требования к месту установки расходомера (ППР)

8.2.1 ППР расходомера может быть установлен на вертикальных, горизонтальных и наклонных участках трубопровода при условии заполнения всего объёма трубопровода ППР жидкостью.

Таким образом, не допускается установка ППР:

- -на самом высоком месте системы;
- -на вертикальной трубе со свободным выходом жидкости.
 - 8.2.2 Примеры неправильной установки ППР приведены на рисунке 8.1.

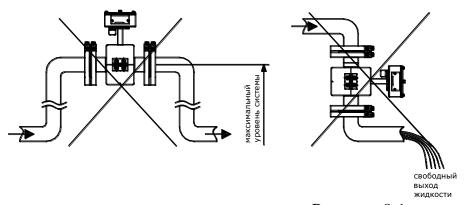


Рисунок 8.1

8.2.3 В месте установки ППР в трубопроводе не должен скапливаться воздух. Наиболее подходящее место для монтажа — нижний или восходящий участок трубопровода (см. рисунок 8.2).

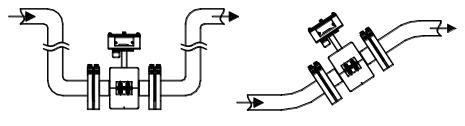


Рисунок 8.2

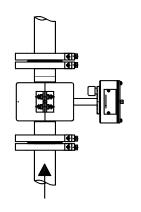


Рисунок 8.3

- 8.2.4 При возможном выпадении осадка, ППР расходомера должен устанавливаться вертикально, при этом направление потока должно быть снизу вверх (см. рисунок 8.3).
- 8.2.5 Выпадение токопроводящего осадка на футеровке трубопровода ППР может привести к снижению точности измерения объёмного расхода теплоносителя, поэтому не допускается использование расходомера в гидравлических трактах с угольными фильтрами.
- 8.2.6 Расходомер необходимо располагать в той части трубопровода, где пульсации и завихрения минимальные. При установке расходомера необходимо обеспечить прямолинейные участки трубопровода длиной не менее 3 ДУ до и 1 ДУ после ППР (см. рисунок 8.4).
- 8.2.7 Если возможен реверсивный режим работы системы, то при выборе длины прямолинейного участка необходимо учесть влияние гидравлических сопротивлений на участке после ППР.

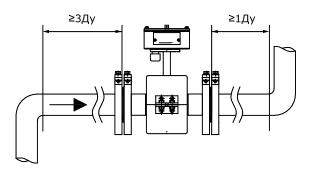


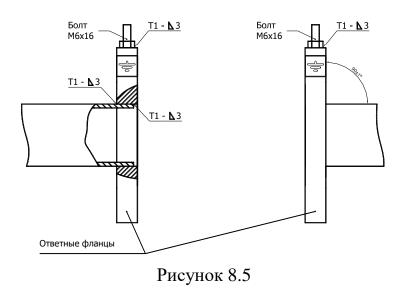
Рисунок 8.4

- 8.2.8 Если диаметр ППР не совпадает с внутренним диаметром трубопровода, то необходимо использовать переходные конуса (конфузоры и диффузоры). Между переходными конусами и ППР также необходимо обеспечить прямолинейные участки трубопровода ЗДУ до и 1ДУ после ППР. На этих участках не должно быть никаких устройств или элементов, вызывающих завихрение потока жидкости. Во избежание существенной потери давления на участке «конфузор-ППР-диффузор» не рекомендуется уменьшать диаметр трубопровода более чем в два раза (уменьшение диаметра в два раза эквивалентно уменьшению площади сечения трубопровода в четыре раза).
- 8.2.9 **Запрещается** устанавливать ППР под запорной арматурой или другими устройствами, при неисправности которых может вытекать жидкость.
- 8.2.10 Запрещается удалять герметичные вводы ПМ или уплотнительные кольца в них.
- 8.2.11 Установка грязевика или фильтра перед ППР не требуется ввиду того, что ППР имеет минимальное гидравлическое сопротивление и не имеет выступающих над внутренними стенками трубопровода элементов (см. п.4.2.4).

8.3 Монтаж расходомера

Перед началом работ на трубопроводе следует убедиться, что в выбранном месте установки ППР снято давление жидкости.

<u>ВНИМАНИЕ!</u> Установка ППР должна производиться после завершения всех сварочных, строительных и прочих работ.


Запрещается использовать ППР в качестве монтажного приспособления при приварке ответных фланцев к трубопроводу.

Нарушение указанных ограничений может привести к выходу расходомера из строя. Гарантийные обязательства предприятия-изготовителя при этом аннулируются.

- 8.3.1 Перед тем, как разрезать трубопровод в месте предполагаемой установки расходомера, необходимо закрепить участки труб, которые могут отклониться от нормального положения после разрезания.
 - 8.3.2 При проведении сварочных работ расходомер должен быть защи-

щен от попадания искр и окалины.

- 8.3.3 Если предусматривается использование конфузора и диффузора, то необходимо проверить соответствие установочных размеров конфузора и диффузора реальному диаметру подводящей трубы.
- 8.3.4 В выбранном месте установки расходомера (ППР) вырезать участок трубопровода с учётом габаритной длины расходомера (ППР) и технологических допусков на сварку.
- $8.3.5~{\rm K}$ прямолинейным участкам трубопровода приварить фланцы в соответствии с ГОСТ 12820-80, при этом угол между осью трубопровода и плоскостью фланца должен быть $90\pm1^{\circ}$. Фланцы следует приваривать таким образом, чтобы после установки расходомера (ППР) ось электродов ППР лежала в горизонтальной плоскости (допустимое отклонение от линии горизонта $\pm10^{\circ}$). При монтаже ответных фланцев необходимо приварить болт заземления к верхней части монтируемого фланца (см. рисунок 8.5).

ВНИМАНИЕ!!! На датчики расхода, монтаж которых выполнен с нарушением требований ГОСТ 12820-80 (соединение труба-фланец), гарантийные обязательства не распространяются (см. рисунок 8.6).

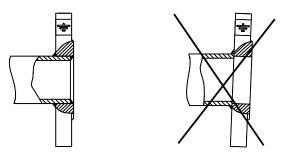
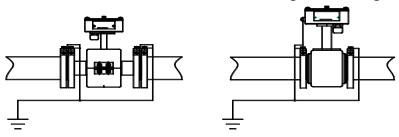


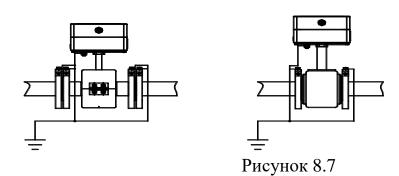
Рисунок 8.6

8.3.6 Установить ППР между приваренными фланцами, зафиксировав его

двумя болтами (шпильками), крепящими ППР к фланцам. ППР следует устанавливать таким образом, чтобы ПМ находился над трубопроводом, а стрелка на корпусе ПМ совпадала с направлением потока жидкости.

- 8.3.7 Точность показаний прибора при направлении потока, противоположном направлению стрелки на корпусе ППР, не гарантируется (кроме случая, когда расходомер обеспечивает измерение реверсивного расхода).
- 8.3.8 Уложить во фланцы паронитовые прокладки, поставляемые в комплекте с расходомером (см. рисунок Б.6).
 - 8.3.9 Установить оставшиеся болты (шпильки).
- 8.3.10 Отцентрировать внутреннее сечение ППР с внутренним сечением трубопровода.
- 8.3.11 Во избежание частичного перекрытия внутреннего сечения трубопровода необходимо обратить внимание на центровку паронитовых прокладок относительно трубопровода и ППР. Края прокладок не должны перекрывать сечение трубопровода.
- 8.3.12 Затяжку болтов (шпилек), крепящих ППР к фланцам на трубопроводе, производить поочерёдно по диаметрально противоположным парам, при этом необходимо избегать применения чрезмерно больших усилий во избежание деформации отбортованной на фланец футеровки ППР.
- 8.3.13 Рекомендуемый момент силы при закручивании гаек в зависимости от ДУ ППР приведен в таблице 7.


Таблина 7


<u> </u>										
Номинальный диаметр первичного преобразо-										
вателя, мм	15	20	25	32	40	50	65	80	100	150
Момент силы закручи- вания гаек, Н•м	15	20	20	35	50	50	55	55	60	100

ВНИМАНИЕ! После того как болты (шпильки), крепящие ППР к фланцам, будут затянуты, установленный расходомер (ППР) запрещается поворачивать вокруг оси трубопровода.

- 8.3.14 После установки расходомера (ППР) необходимо обеспечить его заземление в соответствии с рисунком 8.7 для ПРП и ПРПН соответственно.
- 8.3.15 Заземление ППР следует выполнять в соответствии с требованиями ПУЭ, т.е. путём непосредственного соединения заземляющего проводника с заземлителем, а не с трубопроводом.
- 8.3.16 Допускается вместо заземления выполнять зануление в соответствии с требованиями ПУЭ.
- 8.3.17 Запрещается использование металлорукавов в качестве заземляющих или нулевых защитных проводников.

Заземление расходомера

8.4 Монтаж ТС

- $8.4.1~\mathrm{B}$ выбранном месте установки TC в верхней части трубопровода делается отверстие под защитную гильзу. Глубина погружения чувствительного элемента TC должна быть $(0,3-0,7)\mathrm{D}$, где D внутренний диаметр трубопровода (рисунок $8.8~\mathrm{a}$).
- 8.4.2 Если диаметр чувствительного преобразователя ТС превышает 0,13D, то допускается при установке ТС применять расширитель (рисунок 8.8 б), где Dp внутренний диаметр расширителя.
- 8.4.3 Защитная гильза ввинчивается в штуцер. При сварке следует обратить внимание на сохранность резьбы штуцера. Вся поверхность защитной гильзы должна иметь контакт с жидкостью, температура которой измеряется. Затем в защитную гильзу вставляется ТС и фиксируется зажимным винтом.
- 8.4.4 При наклонной установке ТС, его необходимо устанавливать таким образом, чтобы герметичный ввод ТС был направлен вниз.

После установки ТС, штуцер и участки трубопровода в месте установки ТС рекомендуется теплоизолировать с помощью теплоизолирующих материалов.

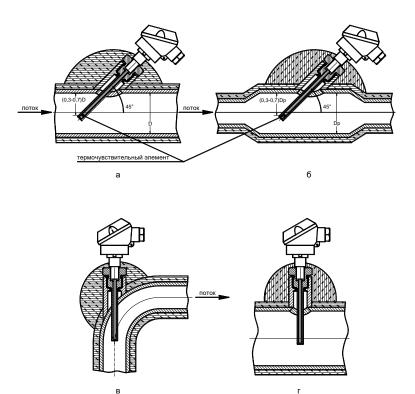


Рисунок 8.8 Рекомендуемые варианты установки термопреобразователей на трубопроводе

8.5 Монтаж ДИД

- 8.5.1 Монтаж ДИД осуществляется в соответствии с эксплуатационной документацией на них.
- 8.5.2 Расходомер может поставляться со встроенными источниками питания датчиков давления (по заказу). В этом случае подключение датчиков давления выполняется в соответствии со схемой на рис. 8.10. Для запитывания датчиков давления переключатель SA1 должен быть включен.

8.6 Монтаж электрических цепей

- 8.6.1 Для проведения монтажа линий связи необходимо отвернуть 4 винта на передней панели ПМ и снять переднюю панель. После этого освобождается доступ к разъемам и клеммникам для подсоединения внешних цепей (см. рисунки 8.10-8.12).
- 8.6.2 В качестве кабеля для подвода сигнальной линии ППР должен использоваться экранированный кабель с двумя свитыми центральными жилами (витая пара в экране). Рекомендуется использовать кабели: КММ 2×0,35 мм², ПВЧС 2×0,35 мм², ШВЧИ 2×0,35 мм². Кроме того, кабель с сигнальными линиями необходимо прокладывать в заземленном металлорукаве или трубе. Поскольку выходное напряжение сигнала, снимаемого с ППР, составляет несколько десятков микровольт, то во избежание дополнительных погрешностей, вызванных наводками на сигнальные линии, не допускается прокладка сигнальных линий в одной трубе (металлорукаве) с другими линиями. Сигнальные линии следует пространственно разносить с другими линиями, минуя промежуточные разъёмы. Экран кабеля сиг-

нальных линий должен быть надежно изолирован внешней оболочкой от трубы или металлорукава, в котором он прокладывается, и присоединен к ППР и ПМ в соответствии со схемой электрических соединений.

- 8.6.3 Не допускается наращивание (соединение) сигнальных линий таким образом, чтобы в месте стыка становилось возможным появление электрических утечек или окисление контактов.
- 8.6.4 Заземление всех кабельных трубопроводов (металлорукавов) должно выполняться таким образом, чтобы исключить образование замкнутых контуров заземления. Отдельные участки кабельного трубопровода (металлорукава) должны либо соединяться между собой с помощью переходных металлических коробок, обеспечивающих надежное электрическое соединение, либо иметь собственные заземления, исключающие образование замкнутых контуров. Наилучшим следует считать разводку заземления «звездой».
- 8.6.5 Вывод сигнальных линий при подключении ППР к ПМ должен производиться через отдельный герметичный ввод на корпусе ПМ.
- 8.6.6 Линии возбуждения могут быть проведены кабелем без экрана, например ШВВП $2\times0,5\,$ мм 2 . Во избежание дополнительных помех и наводок, а также механических повреждений кабелей рекомендуется линии возбуждения прокладывать в стальных заземленных трубах или заземлённых металлорукавах.
- 8.6.7 Вывод линий возбуждения при подключении ППР к ПМ должен осуществляться через отдельный герметичный ввод на корпусе ПМ.
- 8.6.8 В качестве кабеля для подключения к импульсному (частотному) выходу используется кабель без экрана, например, ШВВП 2×0,5 мм². Допускается проводить подключение двух импульсных выходов одним кабелем с четырьмя проводниками. Сопротивление кабеля не должно превышать 100 Ом. Во избежание дополнительных помех и наводок, а также механических повреждений, кабель рекомендуется прокладывать в стальных заземленных трубах или заземлённых металлорукавах.
- 8.6.9 Линии импульсного и частотного выходов могут выводиться через один герметичный ввод.
- 8.6.10 В неиспользуемые герметичные вводы необходимо установить заглушки, чтобы исключить попадание влаги в корпус ПМ.
- 8.6.11 После подключения к ПМ соединительных линий необходимо зажать герметичные вводы.

8.6.12 Для предотвращения скапливания конденсата непосредственно перед герметичным вводом и попадания внутрь ПМ влаги рекомендуется сделать небольшой прогиб кабеля (см. рисунок 8.9).

Рисунок 8.9

8.6.13 Не допускается крепить кабели к трубопроводам.

Схема подключения ПМ.03 papa † † ДИД1 † † дид2 TC1 ППР 2 000000 1 2 3 4 5 6 1 2 3 4 5 6 0 0 **(4)** 1 F/N XP2 4-20мА ⊕) F/N V K 3 K 3 XP3 XP4 XP5 XP6 • 00 TXD COM RXD ПК DB 9 Преобразователь COM RS 485/RS 232

Рисунок 8.10


TXD 3

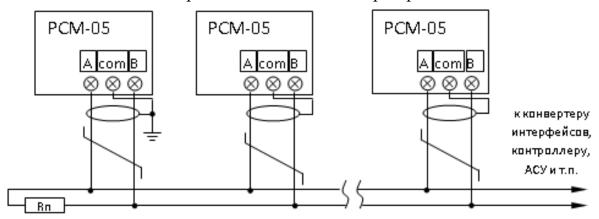
TXD 3

3 TXD COM &

8.7 Описание интерфейсов расходомера

- 8.7.1 Считывание и просмотр хранимых во внутренней памяти настроек и значений интеграторов расходомера осуществляется по интерфейсу RS-232C или RS-485 при помощи программы TesmaStat.exe для Windows XP/7/8/10. Для связи расходомера с ПК или конвертером интерфейсов (RS-232C↔RS-485) используются сигналы RXD, TXD и GND.
- 8.7.2 Для прямого соединения расходомер ПК следует использовать кабель, изображенный на рисунке 8.11.

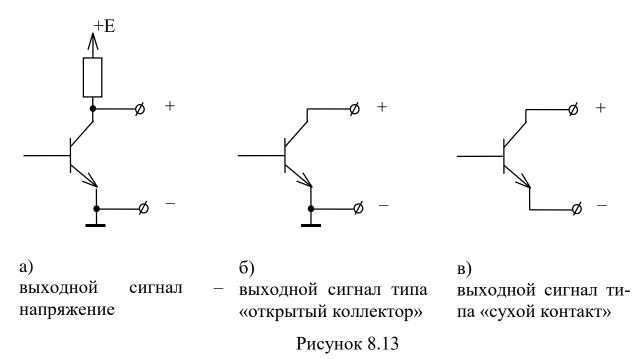
Прямой кабель RS-232C (Расходомер - COM)


Рисунок 8.11

- 8.7.3 При считывании данных по интерфейсу RS-485 для подключения расходомера к ПК дополнительно требуется конвертер, преобразующий сигналы интерфейса RS-232C в RS-485 и обратно. Рекомендуемый конвертер **I-7520U** с автоматически подстраиваемой скоростью, форматом и гальванической развязкой по RS-485.
- 8.7.4 Организация сети расходомеров на базе последовательного интерфейса RS-485 возможна только для **гальванически развязанного варианта** исполнения интерфейса RS-485 в каждом из расходомеров. В такой сети необходимо каждому прибору присвоить уникальный сетевой адрес (см. п. 9.2.6).
- 8.7.5 Схема электрических соединений при организации сети расходомеров на базе гальванически развязанного последовательного интерфейса RS-485 приведена на рисунке 8.12.

ВНИМАНИЕ! Подключение (отключение) расходомера к ПК должно производиться при выключенном расходомере или ПК

Рисунок 8.12 Схема электрических соединений при организации сети


- 1.Согласующее сопротивление Rn устанавливается в крайних точках линий связи и должно быть равно волновому сопротивлению кабеля.
 - 2. Экран линии связи заземляется в одной из крайних точек.
 - 3. Каждый расходомер должен иметь гальваноразвязанный порт RS-485

8.8 Подготовка к работе

- 8.8.1 К работе допускаются расходомеры, не имеющие механических повреждений, нарушения пломб и подготовленные к работе в соответствии с требованиями настоящего раздела.
- 8.8.2 Проверить правильность монтажа электрических цепей в соответствии с электрической схемой подключения, приведенной на рис. (8.10).
- 8.8.3 Включить расход жидкости под рабочим давлением. Проверить герметичность соединения ППР трубопроводом. Течь и просачивание не допускаются.
 - 8.8.4 Подать напряжение питания на ПМ.
- 8.8.5 После выдержки во включенном состоянии в течение 0,5 часа и отсутствии нарушений в работе расходомер считается готовым к эксплуатации.
- 8.8.6 Сданные в эксплуатацию расходомеры работают непрерывно в автоматическом режиме.

8.9 Конфигурация схемы каскада дискретного выхода

8.9.1 Выходной каскад схемы дискретного выхода и сигнала признака реверса аппаратно может быть выполнен одним из 3 способов (см. рисунок 8.13):

8.9.2 Конфигурация выходных каскадов (см. рисунок 8.10), выбирается посредством установки/снятия джамперов на плате модуля F/N (таблица 8):

Таблица 8

F/N	XP3 (K)	XP4 (Э)	Состоянно в можного коското			
V	XP5 (K)	ХР6 (Э)	Состояние выходного каскада			
	ON	ON	Выходной сигнал – «напряжение»			
	OFF	OFF	Выходной сигнал типа «сухой контакт»			
	OFF	ON	Выходной сигнал типа «открытый коллектор»			

- 8.9.3 Напряжение на переходе коллектор эмиттер не должно превышать 24 В.
 - 8.9.4 Ток нагрузки не должен превышать 10 мА.
- $8.9.5~\mathrm{B}$ конфигурации выходного каскада "выход напряжение" уровню логической единицы соответствует величина напряжения от 9 до 14 B, уровню логического нуля от 0 до 1,5 B.

8.10 Демонтаж

Демонтаж расходомеров должен производиться квалифицированными специалистами в строгом соответствии с данным руководством.

Перед началом работ на трубопроводе следует убедиться, что в выбранном месте установки ППР снято давление жидкости.

Демонтаж расходомера следует осуществлять в следующем порядке:

- -отключить питание расходомера;
- -перекрыть расход жидкости в месте установки расходомера (ППР) и убедиться в том, что на участке, где установлен ППР, отсутствует давление;
- -отсоединить от расходомера (ППР) заземляющие шины;
- -отсоединить линии связи ПМ от ППР и от импульсных выходов;
- -ослабить гайки болтов (шпилек), крепящих ППР к фланцам на трубопроводе, и извлечь болты (шпильки), придерживая при этом расходомер (ППР). Затем аккуратно извлечь расходомер (ППР), не повредив фторопластовую футеровку.

9 ПОРЯДОК РАБОТЫ

Управление работой расходомера осуществляется кнопками «выход» ᠍; «влево» ҉ ; «вправо» і; «вход» і, расположенными на передней панели ПМ и кнопкой «служебная» , расположенной на плате цифровой обработки.

Расходомер имеет режимы работы «Рабочий», «Установки» и «Служебный».

9.1 Описание режима «Рабочий»

- 9.1.1 При включении расходомер выходит в режим «Рабочий», предназначенный для просмотра основных измеряемых и вычисляемых параметров.
- 9.1.3 Переход между измерительными каналами осуществляется нажатием кнопки «выход» В.
- 9.1.4 Порядок перехода между окнами меню режима «Рабочий» изображен на рисунке 9.1.

Примечание: штриховой линией выделены окна, отображение которых зависит от конкретных установок в Вашем расходомере.

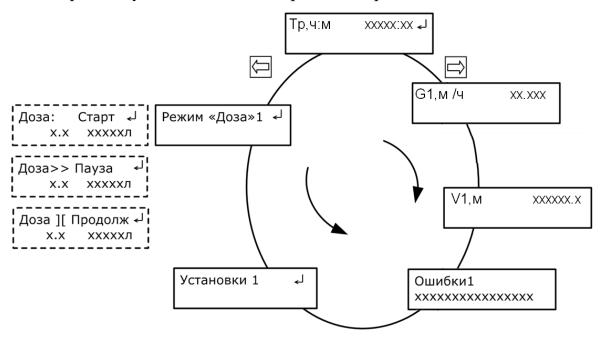


Рисунок 9.1

9.1.5 Описание окон меню режима «Рабочий»

Тр,ч:м	xxx:xx	Тр (ч:мин) - индикация времени наработки.
V1, _M ³	XXX.XXX	V1 (м³) - Индикация объема протекшей жидкости через датчик расходомера.
G1,м ³ /ч	XXX.XXX	Индикация $\mathbf{G1}$ (м 3 /ч) - объемного расхода.

Ошибки1	Индикация символов возникающих неисправно-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	стей и нештатных ситуаций в работе расходомера:
	${f Bo36}$ — обрыв или короткое замыкание в цепи воз-
Ошибки1	буждения ППР;
Возб ПТ ТСП ССССТВ	ΠT – в трубопроводе отсутствует жидкость;
	ТСП – обрыв или короткое замыкание в цепи
	ТСП;
	$\mathbf{G}lacksquare$ – расход меньше установленного минималь-
	ного порога измерения расхода;
	$\mathbf{G} \uparrow$ – превышение установленного максимального
	порога измерения расхода.
	Примечание: при возникновении ошибок Возб и
	$\Pi \Gamma$ счет интеграторов V и M останавливается

Установки1	Вход в режимы «Установки» и «Служебный». Осуществляется нажатием кнопки «вход» 🗗
Режим «Доза»1 ◄ Доза: Старт ⊀ х.х хххххххл	Режим «Доза», предназначен для дозированной подачи устанавливаемого пользователем объема
Доза>> Пауза е х.х хххххл	жидкости (в литрах). Описание работы расходомера в этом режиме приведено в п.9.3.2
Доза][Продолж ∢ х.х хххххл	

9.2 Описание режимов «Установки» и «Служебный»

- 9.2.1 Режим «Установки» предназначен для просмотра установок расходомера. Вход в режимы «Установки» и «Служебный» осуществляется нажатием кнопки «вход» В окне «Установки». Режим «Служебный» предназначен для изменения установок расходомера. Для работы в режиме «Служебный» необходимо снять переднюю панель ПМ и обеспечить доступ к кнопке «служебная» .
- 9.2.2 Порядок перехода между окнами меню режимов «Установки» и «Служебный» изображен на рисунке 9.2.

Примечание: штриховой линией выделены окна, отображение которых зависит от конкретных установок в Вашем расходомере.

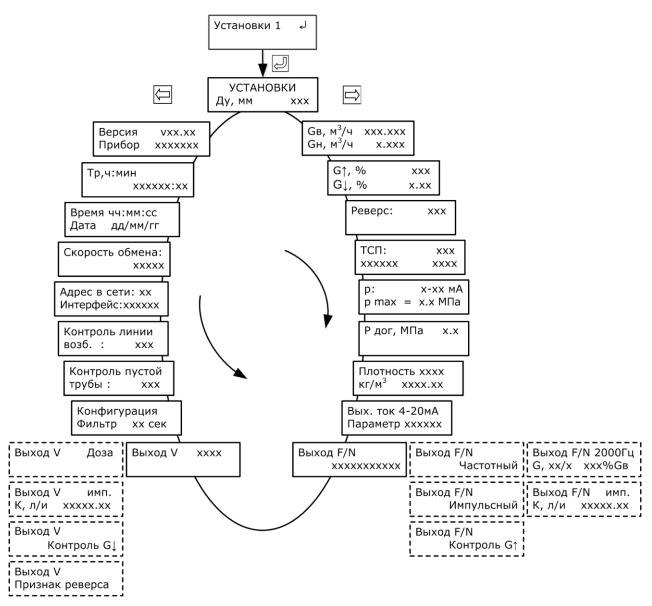


Рисунок 9.2 Режимы «Установки» и «Служебный»

- 9.2.3 Для входа в режим изменения параметров (режим «Служебный») необходимо нажать кнопку «служебная» . Изменение значения параметра расходомера в режиме «Служебный» производится при мигающем изображении строки с этим параметром. Установка необходимого значения осуществляется дискретным увеличением или уменьшением изменяемого параметра посредством нажатия кнопки «вправо» или «влево» соответственно.
- 9.2.4 Переход между изменяемыми параметрами в режиме «Служебный» может осуществляться посредством кнопки «служебная» ■. Выход из режима редактирования с сохранением установленного значения параметра осуществляется повторным нажатием кнопки «служебная» ■.
- 9.2.5 Выход из режимов «Установки» и «Служебный» осуществляется из любого окна меню нажатием кнопки «выход» В.
 - 9.2.6 Описание окон меню режима «Установки»

УСТАНОВКИ	
Ду, мм ххх	Индикация диаметра условного прохода IIIIP.

G в,м ³ /ч	XXX.X	Индикация наибольшего и наименьшего объемного
Gн,м ³ /ч	X.XXX	расхода (диапазон измерения) в зависимости от уста-
		новленного диаметра условного прохода ППР в соот-
		ветствии с таблицей 1.

_		
G↑, %	X.XX	$\mathbf{G} \uparrow$ – индикация значения максимального порога изме-
G↓, %	X.XX	рения объемного расхода. Задается от 60 до 125% Св с
		дискретностью 1%.
		$\mathbf{G} lacksquare$ – индикация значения минимального порога изме-
		рения объемного расхода. Устанавливается из ряда:
		0,25-1% Св с дискретностью 0,05% и 1-10% Св с дис-
		кретностью 1%.
		В соответствии с установленными максимальным и ми-
		нимальным порогом будут регистрироваться ошибки
		Б↓ и Б↑ в работе расходомера, которые отображаются
		в соответствующем меню.
		Например, для установленного Ду=50 мм Сн и Св рав-
		ны $0{,}300$ м 3 /ч и $60{,}0$ м 3 /ч соответственно. Установив
		G↑=110% G в, G ↓=0,25% G в для данного Ду, регистрация
		ошибок G ↓ и G ↑ будет происходить при $0,15$ м ³ /ч и
		66 м ³ /ч соответственно

Реверс: ххх	Выбор индикации объема, массы и дополнительных ин-
	теграторов объема и массы для режима «реверс»: вклю-

Индикация типа применяемых ТС (**Pt 100**, **Pt' 100**, **Pt 500**, **Pt' 500**, **Cu 100**, **Cu' 100**).

При выборе типа ТС отображается его номинальная статическая характеристика.

При установке типа TC «**нет**» (отсутствует TC) задается фиксированное значение температуры для расчета массового расхода и накопленной массы. Устанавливается в диапазоне $0\div150$ °C с шагом 1°C.

При использовании расходомера с подключенным к нему датчиком температуры расчёт массового расхода и массы воды производится с использованием реальных значений температуры воды. В случае возникновения ошибки ТСП (обрыв или короткое замыкание в цепи

PCM-05.03(ТЭСМАРТ), PCM-05.03(ТЭСМАРТ-А) Руководство по эксплуатации

Тип ТСП:

t. °C

нет

XXX

ТСП)	знач	ение тем	перату	ры для расчета м	ассового р	oac-
хода	И	массы	воды	автоматически	берется	ИЗ
Тип Т	СП:	нет				
t, °C		XXX], T.e. 7	го значение, кото	рое устан	юв-
лено п	ри о	тсутстви	и ТС			

p:	х-хх мА	Индикация диапазона стандартного выходного сигнала
$p \max =$	х.х МПа	постоянного тока ДИД от 0 до 5 мА (от 0 до 20 мА, от
		4 до 20 мА) и максимального давления 1,6 МПа

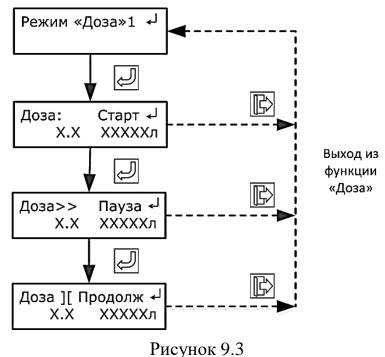
Р дог, МПа	X.X	Индикация	значения	давления,	установленного	про-
		граммно, М	1100			

Плотность вода	«Плотность вода» – индикация значения плотности во-
кг/м ³ хххх.хх	ды, вычисленного в соответствии с измеренным (уста-
	новленным) значением температуры воды.
Плотность	«Плотность» – индикация фиксированного значения
KΓ/M ³ XXXX.X	ллотности жидкости. Устанавливается от 900 до 1100
	кг/м ³ с шагом 1 кг/м ³

Вых.ток 4-20 мА Параметр G,м ³ /ч	
Вых.ток 4-20 мА Параметр G,т/ч	Индикация диапазона выходного тока и установка параметра, преобразуемого в выходной ток 4-20 мА
Вых.ток 4-20 мА	
Параметр Т, °С	

Выход F/N	
Частотный	Индикация установленного типа выходного сигнала
Выход F/N	расхода: «Частотный», «Импульсный» или «Контроль
Импульсный	G↑».
Выход F/N	«Контроль G↑» – см. п. 9.3.3
Контроль G ↑	

Выход F/N 2000Гц	Индикация значения расхода (в процентах от Св), со-
G,м ³ /ч ххх% Gв	ответствующего максимальной выходной частоте
	(Fmax=2000 Гц). Изменяется от 10% до 100% с дис-
D EALOGOE	кретностью 10%
Выход F/N 20001 ц	
Выход F/N 2000Гц G, т/ч ххх%Gв	
<u>:</u>	


Выход F/N имп.	Индикация значения весового коэффициента в л/имп
К, л/и хх.хх	(для импульсного выхода). Устанавливается в зависи-
	мости от выбранного Ду ППР в соответствии с табли-
	цей 4
Выход V Доза	
	Индикация установленных параметров функции вы-
Выход V имп.	тиндикация установленных параметров функции вы- хода V.
	«Доза» - см. п.9.3.2.
•	
Выход V	«Контроль G↓» – см. п. 9.3.3
Контроль С↓	Активация выходного сигнала «Признак реверса»
Выход V	п.9.3.4
Признак реверса	
Конфигурация	Установка фильтра сглаживает разброс показаний из-
Фильтр хх сек	мерения расхода. «Фильтр» может принимать значе-
1	ния 0÷60 сек с шагом 1 сек
Контроль пустой	Контроль пустой трубы – включение
трубы: ххх	«да»/выключение «нет» контроля заполнения трубо-
TPJ ODI : AAA	провода жидкостью
Контроль линии	Контроль линии возбуждения – включение
возб. : ххх	«да»/выключение «нет» контроля обрыва или корот-
BOSO AAA	кого замыкания в цепи возбуждения ППР
	NOTO SULLINIA DI ACINI DOSO JANASTINI IIII
Адрес в сети: ххх	Интикация адраса прибара (1 250) в сати и интер
Интерфейс: ххххх	Индикация адреса прибора (1250) в сети и интерфейса В \$222 С/D \$485
интерфене. ххххх	фейса RS232C/RS485
	1
Скорость обмена:	Индикация скорости обмена прибора с внешними
XXXXXX	устройствами (принимает значения из ряда 600, 1200,
	2400, 4800, 9600, 14400, 19200, 28800, 38400,
	57600 бит/сек)
	
Время чч:мм:сс	17
Дата дд/мм/гг	Индикация текущего времени и даты
То поли	
Тр, ч:мин	Индикация времени работы прибора в часах и мину-
XXXXXX:XX	Tax

Версия vxxx.xx Прибор NXXXX	Версия программного обеспечения и номер прибора
Tiphoop Turner	

9.3 Дополнительные возможности расходомера

- 9.3.1 Расходомер РСМ-05.03(ТЭСМАРТ) имеет дополнительные интеграторы объема V' и массы M' для прямого потока; объема Vр' и массы Мр' для реверсивного потока; разности объемов Δ V' и масс Δ M' жидкости, протекших в прямом и обратном направлениях. Значения дополнительных интеграторов можно установить для просмотра в дополнительных окнах меню режима «Рабочий».
- 9.3.2 Функция «Доза», предназначена для дозированной подачи устанавливаемого пользователем объема жидкости (в литрах). Дозирование осуществляется путем формирования сигнала управления для исполнительного механизма: открытие при старте и автоматическое закрытие при прохождении через ППР установленного объема жидкости.

Установка объема дозы жидкости в литрах осуществляется кнопками «влево» □ – уменьшение объема и «вправо» □ – увеличение объема. Работа расходомера в режиме «ДОЗА» представлена на рисунке 9.3.

Примечание: работа функции «Доза» возможна при условии включенной

9.3.3 Функции «Контроль G^{\uparrow} » и «Контроль G^{\downarrow} ». При активации данной функции выход за пределы диапазона измерения объемного расхода, заданного уставками G^{\uparrow} и G^{\downarrow} вызывает изменение уровня сигнала с логической «1» на логический «0» на выходах F/N для G^{\uparrow} и V для G^{\downarrow} (при конфигурации выходного сигнала — «напряжение»). Конфигурация выходных каскадов F/N для

Выход F/N Контроль G↑ и V для Контроль G↓ выбирается путём установки/снятия джамперов XT2 (XT4), XT3 (XT5), расположенных за клеммни-ками F/N и V (см. рисунок 8.13, таблицу 8).

- 9.3.4 Функция «Признак реверса» формирует сигнал управления на выходе V.
- 9.3.5 При помощи сервисной программы TesmaStat имеется возможность дистанционного считывания и просмотра архива расходомера с персонального компьютера. Программа работает под управлением Microsoft Windows XP/7/8/10 по последовательному интерфейсу RS232C/RS485. Вид отчетной ведомости, формируемой программой приведен в ПРИЛОЖЕНИИ Д.
- 9.3.6 Программа TesmaStat доступна на сайте предприятия по адресу: http://www.tem-pribor.com.

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Расходомеры специального обслуживания не требуют, кроме периодического осмотра с целью контроля соблюдения условий эксплуатации, отсутствия внешних повреждений приборов и его составных частей, наличия напряжения питания. Периодичность осмотра зависит от условий эксплуатации, но должна быть не реже одного раза в месяц.

При проведении профилактических работ в системе с установленным расходомерами и при возможности выпадения токопроводящего осадка на футеровке ППР необходимо демонтировать ППР и очистить отложения в его внутреннем канале чистой мягкой ветошью, смоченной в воде. Очистка футеровки ППР должна производиться без повреждения поверхности электродов. Использование металлических и других предметов, которые могут повредить поверхность электродов, для удаления осадка не допускается.

Несоблюдение условий эксплуатации расходомеров может привести к отказу приборов или превышению допустимого уровня погрешности измерений. При появлении внешних повреждений необходимо вызвать сотрудника регионального представительства для определения возможности дальнейшей эксплуатации прибора.

По мере необходимости рекомендуется очищать составные части расходомеров при помощи сухой или смоченной в воде ветоши.

Замена предохранителей осуществляется в следующем порядке:

- -отключить расходомер от сети питания;
- -отвинтить винты на верхней крышке и снять ее;
- -извлечь предохранитель (предохранитель извлекается при помощи пинцета);

- -установить новый предохранитель;
- -установить верхнюю крышку и закрутить винты.

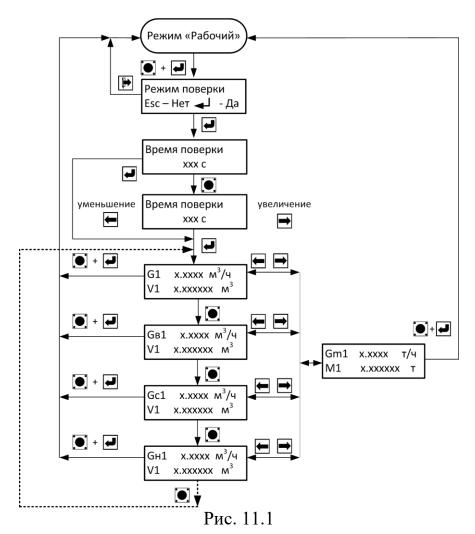
11 ПОВЕРКА

11.1 Требования к поверке приборов

Расходомеры подлежат обязательной первичной государственной поверке при выпуске с производства, а также в случае необходимости после ремонта.

Поверка расходомеров должна проводиться в органах государственной метрологической службы или лабораториях, аккредитованных органами Госстандарта в соответствии с методикой «ГСИ. Расходомеры - счетчики электромагнитные РСМ-05 модификации РСМ-05.03(ТЭСМАРТ), РСМ-05.03(ТЭСМАРТ-А), РСМ-05.05(ТЭСМАРТ), РСМ-05.05(ТЭСМАРТ-А), РСМ-05.07(ТЭСМАРТ-А), РСМ-05.07(ТЭСМАРТ-А), РСМ-05.05(ТЭСМАРТ-П), РСМ-05.05(ТЭСМАРТ-ПА), РСМ-05.05(ТЭСМАРТ-Э). Методика поверки ЭС 99556332.012.000 МП».

Периодичность поверки расходомеров установлена:


PCM-05.03(ТЭСМАРТ-A) - 2 года,

PCM-05.03(ТЭСМАРТ) - 4 года

При сдаче прибора на поверку паспорт должен находиться вместе с прибором.

11.2 Описание режима поверки

11.2.1 Для входа в режим работы расходомера «Поверка» необходимо одновременно нажать кнопки «служебная» и «вход». Для выхода из режима поверки необходимо, находясь в любом окне режима «Поверка», одновременно нажать кнопки «служебная» и «вход». Порядок перехода между окнами режима «Поверка» изображен на рис. 11.1.

- 11.2.2 Архив и интеграторы расходомера при поверке обнуляются.
- 11.2.3 В режиме «Поверка» увеличено число значащих разрядов после запятой для интеграторов V, M;
- 11.2.4 Время поверки (однократного наблюдения) это интервал времени между началом («стартом») и окончанием («стопом») счета. Время поверки устанавливается в диапазоне от 30 до 600с с шагом в 12с. Для изменения времени поверки необходимо нажать кнопку «служебная». Изменение выполняется нажатием кнопки «влево» или «вправо», при этом число на индикаторе мерцает. Завершают редактирование времени поверки кнопкой «вход».
 - 11.2.5 При поверке нажатием кнопки «служебная» можно выбрать:

- измеряемый расход G1;
- максимальный расход Gв1;
- Gc1 средний расход, равный Gв1/2;
- Gн1 минимальный расход
- 11.2.6 После «старта» поверки в режиме счета на экране мигает значение расхода, по окончании счета значение расхода индицируется постоянно;
- 11.2.7 Для повтора измерения необходимо нажать кнопки **«вход»**. Счет интеграторов при каждом следующем измерении начинается с «нуля».

12 Возможные неисправности и способы их устранения

Возможные неисправности расходомеров и способы их устранения приведены в таблице 12.1.

Таблина 12.1

1 аолица 12.	-	
Наименование		
неисправности,		
внешние про-	Вероятная причина	Способ устранения
явления и до-	Вероліная причина	Спосоо устранения
полнительные		
признаки		
При включении	Перегорел сетевой предо-	Заменить предохранитель в
прибор не ра-	хранитель	корпусе ПМ
ботает	хранитель	Rophlyce Thvi
	Плохое заземление ППР	Проверить заземление
		Устранить просачивание жид-
Отсчёт объема	Просачивание жидкости	кости
	через запорную арматуру	Устранить источник тока
при неподвижной среде	Наличие электрического	Заполнить трубопровод или
нои среде	тока в трубопроводе	выключить расходомер
	Не заполнен жидкостью	
	трубопровод ППР	

Во всех остальных случаях необходимо обратиться в сервисный центр предприятия-изготовителя с подробным описанием возникших проблем.

13 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Расходомеры следует хранить на стеллажах в сухом и вентилируемом помещении при температуре от 5° C до 40° C, относительной влажности до 95% при температуре 25° C.

Транспортирование расходомеров производится любым видом транспорта (авиационным - в отапливаемых герметизированных отсеках самолетов) с защитой от атмосферных осадков.

После транспортирования при отрицательных температурах вскрытие ящиков можно производить только после выдержки их в течение 24 часов в отапливаемом помещении.

Уложенные в транспорте расходомеры должны закрепляться во избежание падения и соударений.

14 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Предприятие-изготовитель гарантирует соответствие расходомеров техническим условиям при соблюдении потребителем условий транспортировки, монтажа, эксплуатации.

Гарантийный срок составляет 48 месяцев со дня продажи прибора, из которых:

- -в течение первых 26 месяцев производится бесплатный ремонт и бесплатная замена вышедших из строя комплектующих;
- -в течение следующих 22 месяцев производится бесплатный ремонт (стоимость комплектующих, необходимых для замены вышедших из строя, оплачивается клиентом).

Гарантии распространяются только на расходомеры, у которых не нарушены пломбы и отсутствуют механические повреждения.

Расходомеры, у которых во время гарантийного срока будет обнаружено несоответствие требованиям ТУ 4213-012-99556332 — 2013, ремонтируются предприятием-изготовителем или заменяются другими.

Изготовитель не несет ответственности по гарантийным обязательствам в случаях:

- -неисправностей, возникших вследствие неправильного монтажа и условий эксплуатации прибора;
- -неисправностей, возникших вследствие ремонта или изменения конструкции лицами, не имеющими разрешения изготовителя на проведение таких работ; -утери паспорта.

По вопросам гарантийного обслуживания следует обращаться по адресу предприятия-изготовителя:

ООО "Энергосберегающая компания «ТЭМ"

Адрес: 111020, г.Москва, Сторожевая ул., д.4 стр.3

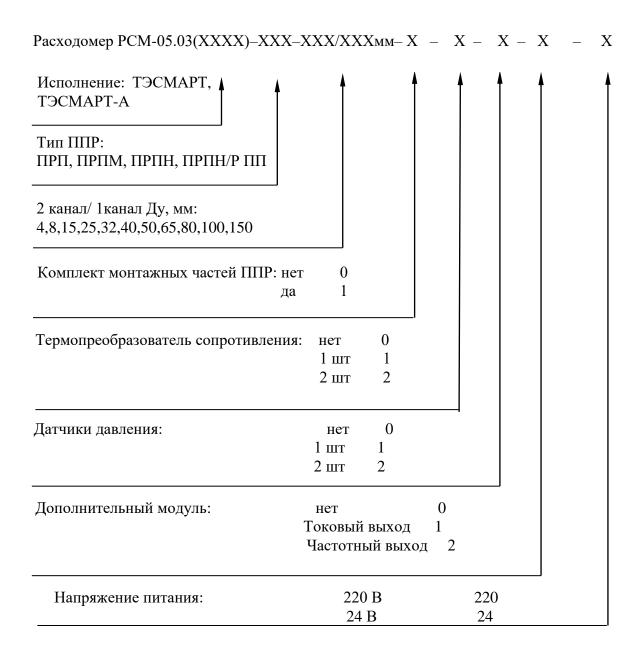
Тел.:(495) 730-57-12, 980-25-16, 980-12-27, 234-30-85, 234-30-86, 234-30-87

Тел./факс: (495) 980-12-57

E-mail: ekotem@tem-pribor.com Web: http://www.tem-pribor.com

15 УЧЕТ РАБОТЫ

Сведения о вводе в эксплуатацию, ремонте, вносятся в таблицу 15.1.


Таблица 15.1

Дата	Наименование работы	Кто про- водил	Подпись

Отсутствие отметки даты ввода в эксплуатацию, снятия на поверку (ремонт) и ввода в эксплуатацию после поверки (ремонта) считается нарушением правил эксплуатации!

ПРИЛОЖЕНИЕ А

Спецификация заказа.

Пример записи расходомера при заказе и в других документах:

Расходомер-счетчик электромагнитный

PCM-05.03(TЭСМАРТ-A) - ПРП - 25/15 мм - 1 - 0 - 0 - 0 - 220

В примере приведено обозначение расходомера РСМ-05.03(ТЭСМАРТ-А) с первичным преобразователем расхода типа ПРП, номинальным диаметром (Ду) 25 мм 2 канал и 15 мм 1 канал, с комплектом монтажных частей, без термометров и датчиков давления, без дополнительного модуля, с напряжением питания 220 В.

Габаритные и установочные размеры

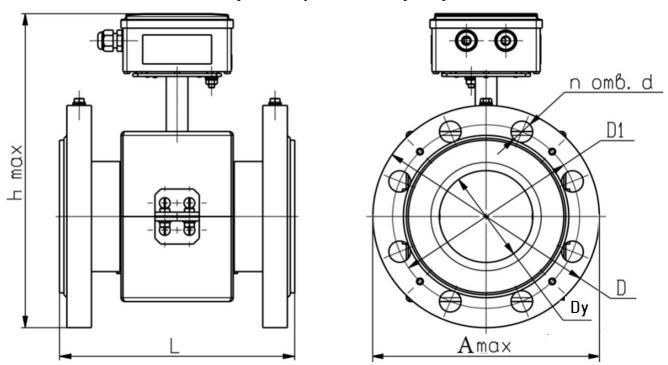


Рисунок Б.1 Габаритные и установочные размеры ПРП Таблица Б.1.

Таоли	ца Б.1.								
Условное	обо-		Размер, мм						
значение		Ду	L	hmax	Amax	D	D1	d	n
ПРП-25		25	158 ⁻³	235	115	115	85	14	4
ПРП-32		32	210-3	260	180	135	100	18	4
ПРП-40		40	210-2	270	180	145	110	18	4
ПРП-50		50	210-2	270	180	160	125	18	4
ПРП-65		65	242 ⁻²	285	200	180	145	18	4
ПРП-80		80	242 ⁻²	285	220	195	160	18	8
ПРП-100		100	248 ^{- 2}	315	232	230	190	22	8
ПРП-150		150	318-4	405	300	300	250	26	8

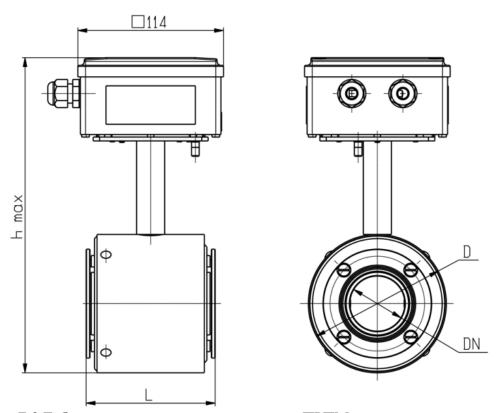
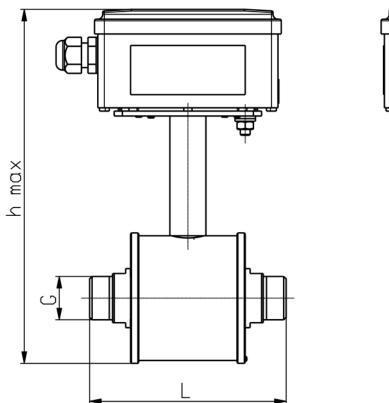



Рисунок Б.2 Габаритные и установочные размеры ПРПМ Таблица Б.2

Условное обозначение	Размер, мм						
условное обозначение	Ду	L	hmax	D			
ПРПМ-15	15	100±2	249	108			
ПРПМ-25	25	100±2	249	108			
ПРПМ-32	32	102±2	249	108			
ПРПМ-40	40	102±2	249	108			
ПРПМ-50	50	102±2	249	108			

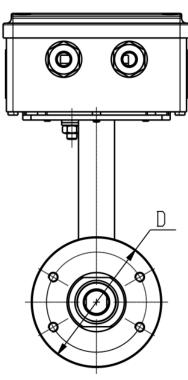


Рисунок Б.3 Габаритные и установочные размеры ПРПН/Р Таблица Б.3

Условное обозначение	Размер, мм							
условное обозначение	Ду	L	hmax	D	G			
ПРПН/Р-4	4	120-3	216	80	G 3/4"			
ПРПН/Р-8	8	120-3	216	80	G 3/4"			
ПРПН/Р-15	15	120-3	216	80	G 3/4"			
ПРПН/Р-20	20	130-3	235	100	G 1"			
ПРПН/Р-25	25	130-3	235	100	G 1 ¼"			

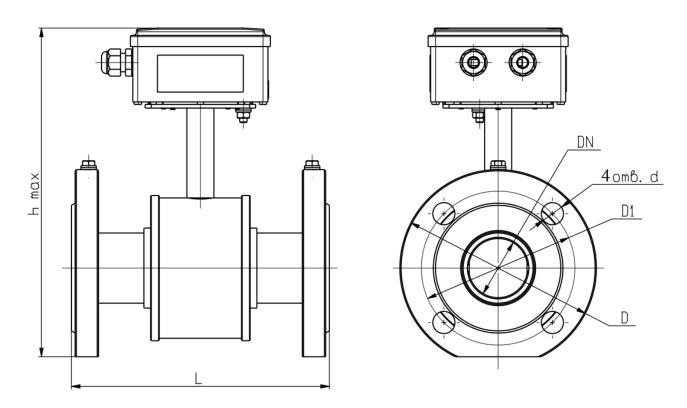


Рисунок Б.4 Габаритные и установочные размеры ПРПН Таблица Б.4

Условное обозначение		Размер, мм									
условное обозначение	Ду	L	h max	D	D1	d	n				
ПРПН-15	15	135-3	224	95	65	14	4				
ПРПН-25	25	155-3	239	115	85	14	4				
ПРПН-32	32	210-3	246	135	100	18	4				
ПРПН-40	40	210	256	145	110	18	4				
ПРПН-50	50	210-3	267	160	125	18	4				

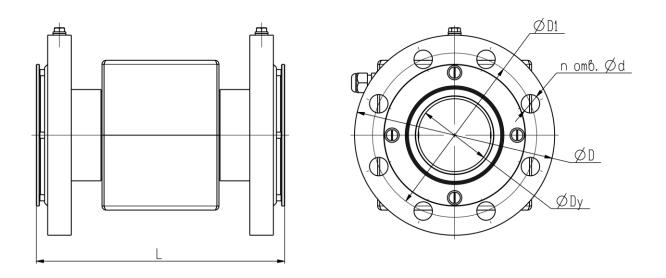


Рисунок Б.5 Габаритные и установочные размеры ПП

Таблина Б.5.

таолица в.з.			Разме	ep, MM		
Условное обозначение	Ду	L	D	D1	d	n
ПРП-25	25	158 ⁻³	115	85	14	4
ПРП-32	32	210-3	135	100	18	4
ПРП-40	40	210-2	145	110	18	4
ПРП-50	50	210-2	160	125	18	4
ПРП-65	65	242 ⁻²	180	145	18	4
ПРП-80	80	242 ⁻²	195	160	18	8
ПРП-100	100	248-2	230	190	22	8
ПРП-150	150	318-4	300	250	26	8

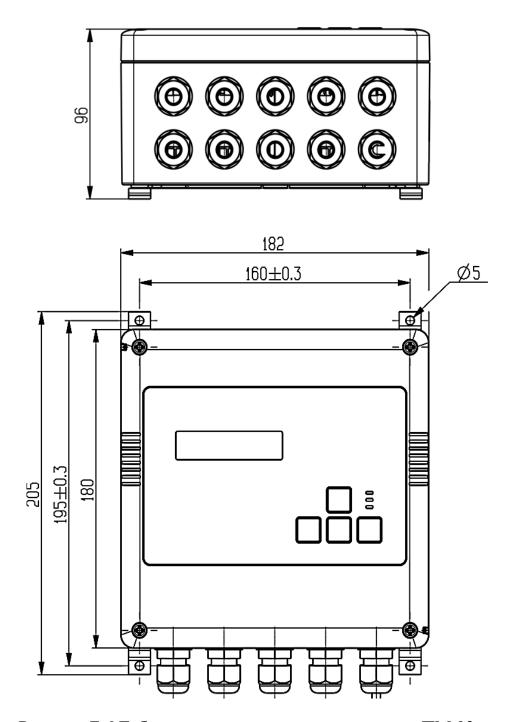


Рисунок Б.6 Габаритные и установочные размеры ПМ.03

Карта заказа расходомера

Карта заказа №													
PCM-0503(TЭCMAPT)/mm													
Заказчик:	Заказчик:												
(наименование преді					теле	фон)							
	Д	уΠ	ПР,	мм (подч	еркну	ть ну	жный	(i)				Исполнение
канал G1				20	25	32	40	50	65	80	100	150	
канал G2	4	8	15	20	25	32	40	50	65	80	100	150	IP(<u>54</u> ,65,68)
Количество ТСП Датчики избыточ Встроенный исто Источник питани Дополнительный Гальванически р Комплектация м Напряжение пит Вес импульса (см Возможность изг Диапазон измере Примечания:	Отличительные особенности (вариант по умолчанию подчеркнут): Количество ТСП(нет, 1, 2), длина L _{погр} (85/120/210) мм Датчики избыточного давления(<u>нет</u> , 1, 2) Встроенный источник питания для датчиков давления (да/нет) Источник питания для датчиков давления (нет, 1) Дополнительный модуль (нет, токовый, частотный) Гальванически развязанный последовательный интерфейс RS-485 (нет/да) Комплектация монтажными частями (да/нет) Напряжение питания (24B/220B) Вес импульса (см. таблицу 2.2) Возможность измерения реверсивного расхода (да/нет) Диапазон измерения расхода (<u>1:400</u> или 1:1000)												
Количество приборов шт. Дата изготовления (согласуется с отделом продаж) Вид поставки (самовывоз, ж/д, авиа, др.) Пункт назначения (почтовый адрес) Примечания Дата заказа: Должность и Ф.И.О. заказчика Подпись: Ф.И.О. принявшего заказ													

ПРИЛОЖЕНИЕ Г Требования к прямолинейным участкам при установке ППР

		Минимал	прямоли-
Тип гидравлического сопротивлен	ЯИЛ	Перед ППР, Ду	После ППР, Ду
3,Ay 1,Ay 1,Ay 1,Ay 1,Ay 1,Ay 1,Ay 1,Ay 1	Отвод с R>3Ду	3	1
5Дy 3Дy	Отвод с R<3Ду	5	3
3Ay 1AY 1AY	Полностью открытая шаровая задвижка	3	1
3Ay 1Ay	Диффузор и конфузор с конусностью до 30°	3	1
	Диффузор и конфузор с конусностью до 10°	0	0
5Ay 3Ay 3Ay 50 50 50 50 50 50 50 50 50 50 50 50 50	Гильза ТС; Фильтр грязевик; Тройник;	5	3
5Ay 3Ay	Открытая задвижка (не шаровая).	5	3
10Дy 5Дy	Насос; Клапан регулирующий;	10	5
10Ду 5Ду Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Частично открытая за- движка.	10	5

ПРИЛОЖЕНИЕ Д Вид отчетной ведомости программы TesmaStat

 Тип теплосчётчика:
 РСМ-05.03
 ДУ
 Gmin, м³/ч
 Gmax, м³/ч
 Kv, л/имп.
 Fmax КГц

 Номер теплосчётчика:
 1140038
 1
 50
 0,150
 60,0
 -- --

Номер абонента: Адрес установки:

Система 2 Расходомер

Ведомость учёта параметров водопотребления. статистические данные с 01.04.2015 по 29.04.2015

	Macca	Темп.	Давление	Вре	мя, ч	
Дата	т	°C	МПа	наработки	неработы	Ошибки
1	M1	t1	P1	Тнар, ч	Тнер	
01.04		40,33		9,23	14,77	4
02.04						
03.04						
04.04						
05.04						
06.04		40,34		7,52	16,48	4
07.04		40,38		8,43	15,57	4
Итого:	0,0	40,35		25,18	46,82	
08.04	334,3	40,35	0,50	14,28	9,72	4
09.04	1245,0	40,39	0,50	24,00	0,00	
10.04	1243,2	40,37	0,50	24,00	0,00	
11.04	1242,5	40,36	0,50	24,00	0,00	
12.04	1242,1	40,37	0,50	24,00	0,00	
13.04	1238,5	40,33	0,50	24,00	0,00	
14.04	748,5	40,31	0,50	24,00	0,00	
Итого:	7294,1	40,36	0,50	158,28	9,72	
15.04	353,2	40,33		19,59	4,42	4
16.04	251,9	40,34	0,50	13,88	10,12	4
17.04	436,5	40,35	0,50	24,00	0,00	
18.04	439,2	40,41	0,50	24,00	0,00	
19.04	441,8	40,47	0,50	24,00	0,00	
20.04	444,0	40,52	0,50	24,00	0,00	
21.04	446,1	40,55	0,50	24,00	0,00	
Итого:	2812,7	40,43	0,50	153,47	14,53	
22.04	425,4	40,52	0,50	22,96	1,04	4
23.04	228,4	40,51		12,33	11,67	4
24.04						
25.04						
26.04			-			
27.04			-			
28.04						
Итого:	653,9	40,52	0,50	35,28	12,72	
29.04	23,3	40,42		1,29	22,71	4
Итого:	23,3	40,42		1,29	22,71	
Итого:	10784.0	40.39	0.50	373.5	106.5	

Время работы теплосистемы, ч	696,0	=	Тнар, ч +	Ттах, ч +	Tmin, ч +	Ттех.н, ч
	696,0	=	373,5	0,0	0,0	322,5
Показания интеграторов	Ha 24	Ha 24:00		24:00	Результат	Ha 09:43
Показания интеграторов	31.03.2015		29.0	4.2015	за период	09.06.2015
Масса теплоносителя М1, т	4229	9,5	150	013,4	10784,0	15091,1
Время наработки, ч	258	,5	60	32,0	373,5	773,8
Время неработы Тнер = Ттах + 1	, ч			322,5		

Представитель абонента	Представитель поставщика
TSTAT v4.56b	

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.29.032.A № 55217

Срок действия до 27 мая 2019 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Расходомеры-счетчики электромагнитные PCM-05 модификации PCM-05.03(ТЭСМАРТ), PCM-05.03(ТЭСМАРТ-А), PCM-05.05(ТЭСМАРТ), PCM-05.05(ТЭСМАРТ-А), PCM-05.05(ТЭСМАРТ-А), PCM-05.05(ТЭСМАРТ-П), PCM-05.05(ТЭСМАРТ-П), PCM-05.05(ТЭСМАРТ-П), PCM-05.05(ТЭСМАРТ-П), PCM-05.05(ТЭСМАРТ-П)

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Энергосберегающая компания "ТЭМ", г. Москва

РЕГИСТРАЦИОННЫЙ № 57470-14

ДОКУМЕНТ НА ПОВЕРКУ **ЭС 99556332.012.000 МП**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ

1 год - для модификации РСМ-05.05(ТЭСМАРТ-Э);

2 года - для модификации РСМ-05.03 (ТЭСМАРТ-А);

4 года - для остальных модификаций

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **27 мая 2014 г. № 683** с изменением, утвержденным приказом от **06 июня 2014 г. № 796**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Ф.В.Бульпин

O6 2014 г.

Серия СИ

Nº 015582

www.tem-pribor.com Тел: (495) 234-30-85 (86,87), (495) 730-57-12 111020, Москва, ул. Сторожевая, д. 4, строение 3